a2 United States Patent

US009460102B1

10) Patent No.: US 9,460,102 B1

Bono et al. 45) Date of Patent: Oct. 4, 2016
(54) MANAGING DATA DEDUPLICATION IN (52) US. CL
STORAGE SYSTEMS BASED ON I/O CPC oo, GO6F 17/30156 (2013.01)
ACTIVITIES (58) Field of Classification Search
USPC oo 707/637, 687, 692, 694, 685, 758

(71) Applicant: EMC Corporation, Hopkinton, MA
(US)

(72) Inventors: Jean-Pierre Bono, Westborough, MA
(US); Dennis T. Duprey, Raleigh, NC
(US); Xiangping Chen, Sherborn, MA
(US); Philippe Armangau, Acton, MA
(US); Monica Chaudhary, South
Grafton, MA (US); Mark K. Ku,
Wolaston, MA (US)

(73) Assignee: EMC Corporation, Hopkinton, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 164 days.

(21) Appl. No.: 14/141,221

(22) Filed: Dec. 26, 2013

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,280,854 B1* 10/2012 Emmert GO6F 17/30221
707/637
8,442,952 B1* 5/2013 Armangau GO6F 17/30159
706/14

* cited by examiner

Primary Examiner — Sana Al Hashemi

(74) Attorney, Agent, or Firm — Krishnendu Gupta; Jason
A. Reyes; Deepika Bhayana

(57) ABSTRACT

A method is used in managing data deduplication in storage
systems based on I/O activities. /O activity of first and
second data objects is evaluated. The first and second data
objects are selected for applying a deduplicating technique.
Based on the evaluation, the deduplicating technique is
applied to the first and second data objects.

18 Claims, 9 Drawing Sheets

(51) Int.CL
GO6F 17/30 (2006.01)
DEDUPLICATION DEDUPLICATION DEDUPLICATION
POLICES |~ DIRECTOR |~ ENGINE
120 105
DATA
ITERATION
DEDUPLICATION
INDEX TABLE DIGEST SERVER
= 110
DEDUPLICATION
REQUESTS
et P -
|) FLESYSTEM | |
! | COORDINATOR fe—{ MAPPINGDRWVER | !
: 155 165 |
1]

"""""""" T
[1

STORAGE { DB1 | DB2 DB3 4034\

EXTEN;I'S/? 14 135 13 a7

¥
STORAGE
DB1 DB2 DB3 DB4
EXTEN1T33{ 8 | 18 | o m\

STORAGE{ DB1 DB2 oB3 | DBt

EXTENT C
12 142 43 144 145

DEDUPLICATION DOMAIN 1 130

0 P WEIGHT
SHARED BIT (NOT SHARED) 1S DEDUPED (NO) 231,1 a4
20 21
DATA
VIRT%J&L BIT Ceveeses Bch;gK
o TOTAL DISTRIBUTED =
D'REZ%; BIT WEIGHT (d1)
= 222
DIGEST BIT =
a: MR
wa%n (a1 23 (@)
4 2

FSBNAVBM ID
206

VIRTUAL BLOCK
PPN METADATA (VBM) OBJECT
MAPPING POINTER
OF A SOURCE DATA BLOCK
20 P WEIGHT
SHARED BIT (NOT SHARED) cerenean 236"| d3
211
DATA
V|RTZL)J1A§L BIT cerereas BLZ%ECK
o TOTAL DISTRIBUTED =
D'R'Zﬂ BIT wsler;g (d2)
DIGEST BIT =
214 MB/}_PPluG POI“TI%R L?\ gé\gA
wac;ng (d2) 0K (e3) §2$ s)

FSBN/VBM ID
216

VIRTUAL BLOCK
tesenrse METADATA (VBM) OBJECT

MAPPING POINTER
OF A TARGET DATA BLOCK

US 9,460,102 B1

U.S. Patent Oct. 4, 2016 Sheet 1 of 9
10—~ 12 16
/ 20 /
DATA STORAGE MANAGEMENT
SYSTEM SYSTEM
18
/
14a 14b 14n
/ / /
HOST/ HOST/ cee HOST/
SERVER SERVER SERVER

FIG. 1

US 9,460,102 B1

Sheet 2 of 9

Oct. 4, 2016

U.S. Patent

¢ 9ld
_ g _ _
0t & Z . %
ye~d | NOILYLS T0¥INOD ¥0S$300YUd VLVa ¥0S$300d VLVa
FUVMAXYH I9VHOLS a3Sve i
o€
2dS RER 1dS
Ll ceey 8 087 vw” |1
agy I A 15 gep
I
Ow.v..ml]]]]]]]] :T<w.v
| aiaf [s+af [#1a| |esal [zva| |valloval | ea] | i
I
m | | | | | | | | m
N N N N N " H
S T AN /m,/ e ——— m
1 [~ |
gey~ ! !
7 | gal|a||oa]|lsa||val|eallzal|ral|
~ I
N N “ 1 I I I I I I I m
ca vd €4 za id D B
Vor 0F W3LSAS FOVHOLS 03SVE Y0074
g
—0¢ 4! [g _
s o m | W &)
0b W3LSAS INFWIDYNYIN ¥IAYIS/LSOH ¥IAYIS/LSOH | | ¥IAYIS/LSOH

US 9,460,102 B1

Sheet 3 of 9

Oct. 4, 2016

U.S. Patent

€ 9Old
909 ~S321A3A TWIISAHd €09 ~S301A30 TYOISAHd
Q¥9~2 dNOYD AIvd €¥9~1 dNOYO AIvY
4e9 EZ9
SNNT SNNT
SHIAVT30IAIA WIID01 SYIAYT30IAIA WIIO01
JHON O INO J4OW JO INO

qi9 EL9
=l=]=t S=]=l=}"
30IA3d 32I1A3d
S33IA3d
ddddviA

304N0S3Y o_m_m_zmo - 1 700d 3OVHO1S

05

US. P

US 9,460,102 B1

atent Oct. 4, 2016 Sheet 4 of 9
DEDUPLICATION DEDUPLICATION DEDUPLICATION
POLICIES SE— DIRECTOR |« ENGINE
122 120 105
DATA
ITERATION
DEDUPLICATION
INDE)1(1T5ABLE DIGEST SE%ER
DEDUPLICATION
REQUESTS
e 1
1
! 10 FILE SYSTEM
| | COORDINATOR |*+—*| MAPPINGDRIVER
! 155 165
o N
/ l/
STORAGE
DB1 DB2 DB3 DB4
EXTEN1T3A1\{ 134 135 136 a7l [
r
STORAGE
DB1 DB2 DB3 B4\ |.....
EXTENT B 138 139 140 141
132
STORAGE DB1 DB2 DB3 DB4 1
EXTENT C 142 143 144 145
133
DEDUPLICATION DOMAIN 1 130

U.S. Patent Oct. 4, 2016 Sheet 5 of 9 US 9,460,102 B1

LUN 80
/

FILE SYSTEM DIRECTORY HIERARCHY |~.g9

INODE OF DATA FILES ~ 84

INDIRECT BLOCK OF DATA FILES ~86

DATA BLOCK METADATA ~87

DATA BLOCKS OF DATA FILES ~ 88

FIG. 5

U.S. Patent Oct. 4, 2016 Sheet 6 of 9 US 9,460,102 B1

PER BLOCK METADATA

(BMD) 70
/
MAPPING POINTER 71
BMD STATE 79
FIG. 6
MAPPING POINTER 7/1
SHARED BIT 90
DIGEST BIT 91
DIRECT BIT 92
VIRTUAL BIT .93
WEIGHT ~94
UNUSED BIT ~05
BLOCK ADDRESS .96
(FILE SYSTEM BLOCK NUMBER/
VIRTUAL BLOCK METADATA ID)

FIG. 7

U.S. Patent

Oct. 4, 2016 Sheet 7 of 9 US 9,460,102 B1
2 22
20 P WEIGHT
SHARED BIT (NOT SHARED) IS DEDUPED (NO) 231 d4
201 221
DATA
VIRT;J(I)AZL BIT —P] M EEEEERE) BL2%OCK
—— TOTAL DISTRIBUTED o
D'Rggg BIT WEIGHT (d1) T
eE 2
DIGEST BIT
204 MAPPING POINTER TO
DATA BLOCK (d4
WEIGHT (d1) 90 (d4)
2_05 —
FSBN/VBM ID |
206 VIRTUAL BLOCK
e eeeeens METADATA (VBM) OBJECT
MAPPING POINTER
OF A SOURCE DATA BLOCK
e 210 e 225 WEIGHT
SHARED BIT (NOT SHARED) et 2361 d3
211
— DATA
VIRT;.J1A2L BIT e 6 0 &6 6 06 0 BL2%CK
212 5
TOTAL DISTRIBUTED o
D'RE??T BIT WEIGHT (d2) 1
— 226
DIGEST BIT
214 MAPPING POINTER TO DATA
BLOCK (d3) (NOT SHARED
WEIGHT (d2) ()§27)
As —
FSBN/VBM ID |
216 VIRTUAL BLOCK
s e eeeeens METADATA (VBM) OBJECT
MAPPING POINTER
OF A TARGET DATA BLOCK

FIG. 8

U.S. Patent

Oct. 4, 2016 Sheet 8 of 9 US 9,460,102 B1
e 200 el 220 WEIGHT
SHARED BIT (YES) IS DEDUPED (YES) 2311 d4
201 ™ 221
DATA
VIRTéJéAZL BIT A Bchs)gK
— TOTAL DISTRIBUTED =
D'REz%g BIT WEIGHT (d1 + d3) 1
2 222
DIGEST BIT
204 MAPPING POINTER TO
DATA BLOCK (d4)
WEIGHT (d1) 973
215 —
FSBN/VBM ID
206 VIRTUAL BLOCK
e eeeeen METADATA (VBM)
OBJECT
MAPPING POINTER
OF A SOURCE DATA BLOCK
20 225 WEIGHT
SHARED BIT (NOT SHARED) Ceeecees 286~ d3
211 - o
211 -
V|RT£J1A;L BIT cececeen Bé%gK
— TOTAL DISTRIBUTED 7 E2N
D'REZ% BIT WEIGHT (d2)
£l 226
DIGEST BIT —
214 MAPPING POINTER TO VBM
FOR DATA BLOCK (d3)
WEIGHT (d2) (SHARED)
215 207
FSBN/VBM ID
i |
* O & & & ¢ & O VIRTUAL BLOCK
METADATA (VBM) OBJECT
MAPPING POINTER
OF A TARGET DATA BLOCK

FIG. 9

U.S. Patent

Oct. 4, 2016 Sheet 9 of 9

MANAGING DATA DEDUPLICATION IN)

STORAGE SYSTEMS BASED ON
/O ACTIVITIES.
450

Y

A REQUEST IS RECEIVED TO
DEDUPLICATE A FIRST
OBJECT TO A SECOND OBJECT.
452

Y

EVALUATE I/O ACTIVITY OF THE FIRST
AND SECOND OBJECTS.
454

Y

BASED ON EVALUATION OF THE /0
ACTIVITY, APPLY A DEDUPLICATING
TECHNIQUE TO THE FIRST AND
SECOND OBJECTS.

456

FIG. 10

US 9,460,102 B1

US 9,460,102 B1

1
MANAGING DATA DEDUPLICATION IN
STORAGE SYSTEMS BASED ON I/O
ACTIVITIES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to co-pending U.S. patent
application Ser. No. 14/141,287 entitled MANAGING
DATA DEDUPLICATION IN STORAGE SYSTEMS filed
on Dec. 26, 2013, and U.S. patent application Ser. No.
14/141,258 entitled MANAGING DATA DEDUPLICA-
TION IN STORAGE SYSTEMS BASED ON STORAGE
SPACE CHARACTERISTICS filed on Dec. 26, 2013,
which is incorporated herein by reference.

BACKGROUND

1. Technical Field

This application relates to managing data deduplication in
storage systems based on I/O activities.

2. Description of Related Art

Computer systems may include different resources used
by one or more host processors. Resources and host proces-
sors in a computer system may be interconnected by one or
more communication connections. These resources may
include, for example, data storage devices such as those
included in the data storage systems manufactured by EMC
Corporation. These data storage systems may be coupled to
one or more servers or host processors and provide storage
services to each host processor. Multiple data storage sys-
tems from one or more different vendors may be connected
and may provide common data storage for one or more host
processors in a computer system.

Ahost processor may perform a variety of data processing
tasks and operations using the data storage system. For
example, a host processor may perform basic system [/O
operations in connection with data requests, such as data
read and write operations.

Host processor systems may store and retrieve data using
a storage device containing a plurality of host interface units,
disk drives, and disk interface units. The host systems access
the storage device through a plurality of channels provided
therewith. Host systems provide data and access control
information through the channels to the storage device and
the storage device provides data to the host systems also
through the channels. The host systems do not address the
disk drives of the storage device directly, but rather, access
what appears to the host systems as a plurality of logical disk
units. The logical disk units may or may not correspond to
the actual disk drives. Allowing multiple host systems to
access the single storage device unit allows the host systems
to share data in the device. In order to facilitate sharing of
the data on the device, additional software on the data
storage systems may also be used.

In data storage systems where high-availability is a neces-
sity, system administrators are constantly faced with the
challenges of preserving data integrity and ensuring avail-
ability of critical system components.

Additionally, the need for high performance, high capac-
ity information technology systems are driven by several
factors. In many industries, critical information technology
applications require outstanding levels of service. At the
same time, the world is experiencing an information explo-
sion as more and more users demand timely access to a huge
and steadily growing mass of data including high quality
multimedia content. The users also demand that information

10

15

20

25

30

35

40

45

50

55

60

65

2

technology solutions protect data and perform under harsh
conditions with minimal data loss and minimum data
unavailability. Computing systems of all types are not only
accommodating more data but are also becoming more and
more interconnected, raising the amounts of data exchanged
at a geometric rate.

To address this demand, modern data storage systems
(“storage systems”) are put to a variety of commercial uses.
For example, they are coupled with host systems to store
data for purposes of product development, and large storage
systems are used by financial institutions to store critical
data in large databases. For many uses to which such storage
systems are put, it is highly important that they be highly
reliable and highly efficient so that critical data is not lost or
unavailable.

Deduplication is a space-saving technology intended to
eliminate redundant (duplicate) data (such as, files) on a data
storage system. By saving only one instance of a file, disk
space can be significantly reduced. For example, a file of
size 10 megabytes (MB) may be stored in ten folders of each
employee in an organization that has ten employees. Thus,
in such a case, 100 megabytes (MB) of the disk space is
consumed to maintain the same file of size 10 megabytes
(MB). Deduplication ensures that only one complete copy is
saved to a disk. Subsequent copies of the file are only saved
as references that point to the saved copy, such that end-
users still see their own files in their respective folders.
Similarly, a storage system may retain 200 e-mails, each
with an attachment of size 1 megabyte (MB). With dedu-
plication, the disk space needed to store each attachment of
size 1 megabyte (MB) is reduced to just 1 megabyte (MB)
from 200 megabyte (MB) because deduplication only stores
one copy of the attachment.

Data deduplication can operate at a file or a block level.
File deduplication eliminates duplicate files (as in the
example above), but block deduplication processes blocks
within a file and saves unique copy of each block. For
example, if only a few bytes of a document or presentation
or a file are changed, only the changed blocks are saved. The
changes made to few bytes of the document or the presen-
tation or the file does not constitute an entirely new file.

While deduplication systems have helped make data
management much easier, they also come with a number of
challenges, especially when managing the process of dedu-
plicating data.

SUMMARY OF THE INVENTION

A method is used in managing data deduplication in
storage systems based on /O activities. [/O activity of first
and second data objects is evaluated. The first and second
data objects are selected for applying a deduplicating tech-
nique. Based on the evaluation, the deduplicating technique
is applied to the first and second data objects.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will
become more apparent from the following detailed descrip-
tion of exemplary embodiments thereof taken in conjunction
with the accompanying drawings in which:

FIGS. 1-2 are examples of an embodiment of a computer
system that may utilize the techniques described herein;

FIG. 3 is an example illustrating storage device layout;

FIG. 4-9 are diagrams illustrating in more detail compo-
nents that may be used in connection with techniques herein;
and

US 9,460,102 B1

3

FIG. 10 is a flow diagram illustrating processes that may
be used in connection with techniques herein.

DETAILED DESCRIPTION OF
EMBODIMENT(S)

Described below is a technique for use in managing data
deduplication in storage systems based on [/O activities,
which technique may be used to provide, among other
things, evaluating I/O activity of first and second data
objects, where the first and second data objects are selected
for applying a deduplicating technique, and based on the
evaluation, applying the deduplicating technique to the first
and second data objects.

Generally, a storage extent is a logical contiguous area of
storage reserved for a user requesting the storage space. A
storage extent may include a set of disks having different
RAID levels. A disk may be a physical disk within the
storage system. A LUN may be a logical unit number which
is an identifier for a logical unit representing a portion of
disk storage. Each slice of data may have a mapping to the
location of the physical drive where it starts and ends. A
LUN presented to a host system may be organized as a file
system by a file system mapping logic of a storage system.

A file is uniquely identified by a file system identification
number. Each data block of a file is referenced by a logical
block number and/or file system block number. A logical
block number of a file refers to a data block by relative
position of the data block inside the file. A file system block
number of a file refers to a data block by relative position of
the data block on a physical disk device on which the file is
stored. A file system block number for a data block is
computed based on a file offset and the size of the data block.
Further, an inode of a file includes metadata that provides a
mapping to convert a file system block number of a data
block to its corresponding logical block number. For
example, in case of a data block size of 4 kilobytes (KB), if
a file offset value is smaller than 4096 bytes, the file offset
corresponds to the first data block of the file, which has file
block number 0. Further, for example, if a file offset value
is equal to or greater than 4096 bytes and less than 8192
bytes, the file offset corresponds to the second data block of
the file, which has file block number 1.

Generally, each file system data block of a file is associ-
ated with a respective mapping pointer. A mapping pointer
of a file system block points to the file system block and
includes metadata information for the file system block. A
file system block associated with a mapping pointer may be
a data block or an indirect data block which in turn points to
other data blocks or indirect blocks. A mapping pointer
includes information that help map a logical offset of a file
system block to a corresponding physical block address of
the file system block.

Further, a mapping pointer of a file system block includes
metadata information for the file system block such as a
weight that indicates a delegated reference count for the
mapping pointer. The delegated reference count is used by a
snapshot copy facility when a replica of a file is created.
Mapping pointers of the inode of the file are copied and
included in the inode of the replica of the file. Mapping
pointers of the inode may include mapping pointers pointing
to direct data blocks and mapping pointers pointing to
indirect data blocks. The delegated reference count values
stored in the mapping pointers of the file and the replica of
the file are updated to indicate that the file and the replica of
the file share data blocks of the file.

15

25

40

45

4

The delegated reference counting mechanism is described
in U.S. Pat. No. 8,032,498 for “Delegated reference count
base file versioning” issued Oct. 4, 2011, which is incorpo-
rated herein by reference.

Further, the delegated reference counting mechanism is
also used by a deduplication facility for performing dedu-
plication on a set of identical data blocks by sharing the set
of identical data blocks and keeping a single copy of data
block such that other identical data blocks point to the single
copy of the data block.

Thus, a delegated reference count is a way of maintaining
block ownership information for indicating whether or not
each indirect block or data block of a file is shared with
another version of the file or another identical data block.
Further, as introduced above, files are organized as a hier-
archy of file system blocks including inodes, indirect blocks,
and data blocks. The hierarchy of file system blocks includes
a parent-child block relationship between a parent object
that points to a child object. For example, if the mapping
pointer of the inode of a file points to a data block, the
association between the mapping pointer of the inode and
the data block may be viewed as a parent-child block
relationship. Similarly, for example, if the mapping pointer
of an indirect block of a file points to a data block, the
association between the mapping pointer of the indirect
block and the data block may be viewed as a parent-child
block relationship. Block ownership information is main-
tained by storing respective reference counts for the file
system indirect blocks and file system data blocks in the file
system block hierarchy, and by storing respective delegated
reference counts for the parent-child block relationships in
the file system block hierarchy. For each parent-child block
relationship, a comparison of the respective delegated ref-
erence count for the parent-child relationship to the refer-
ence count for the child block indicates whether or not the
child block is either shared among parent blocks or has a
single, exclusive parent block. For example, if the respective
delegated reference count is equal to the respective reference
count, then the child block is not shared, and the parent
block is the exclusive parent of the child block. Otherwise,
if the respective delegated reference count is not equal to the
respective reference count, then the child block is shared
among parent blocks.

Further, when a sharing relationship of a file system block
is broken, the reference count in the per-block metadata of
the file system block is decremented by the delegated
reference count associated with mapping pointer of the file
system block.

Data deduplication is a process by which a data storage
system can detect multiple identical copies of data and only
keep a single copy of that data, thus eliminating the redun-
dant data by removing other copies of that data and thus
improving storage utilization. Thus, the data deduplication
process has the ability to detect common blocks of data and
maintain a single copy of the common blocks, thereby
increasing the efficiency of storage devices by storing data
in a reduced number of physical blocks. In at least some
systems, data deduplication requires iterating over set of
data blocks in one or more storage extents of a deduplication
domain by processing digest information associated with
each data block, finding the data blocks that contain identical
information, and mapping the identical data blocks to a
single copy of the data. Thus, in a deduplicated system, a
single data block may represent a large number such as
hundreds of deduplicated data blocks such that each dedu-
plicated data block refers to the single data block stored on
a storage device (e.g. a disk). In such systems, an index table

US 9,460,102 B1

5

of unique digests is created to find commonality among the
data set. The size of this index table determines a window of
deduplication opportunity. The larger the index table, the
more blocks can be checked for duplicates, and thus the
larger the opportunity for deduplication.

Generally, a set of storage extents that are deduplicated
together form a deduplication domain. During iteration of a
deduplication domain, an index table of unique digests is
created from data blocks that are iterated through. Further,
during iteration of data blocks of a deduplication domain,
digest for each data block is computed and compared with
digests stored in an index table. If a matching digest for a
data block is found in an index table, contents of data blocks
are compared to verify that the data blocks are duplicates of
each other, and the data block is deduplicated to an identical
data block associated with the matching digest found in the
index table by updating address mapping information (such
as Virtual Block Mapping pointers described herein) of the
deduplicated data block to point to the identical data block
found using the index table. Further, if no matching digest
for a data block is found in an index table, the digest for the
data block is added to the index table. Thus, deduplication
maps data blocks that contain identical information to a
single copy of the data thereby consolidating I/O operations
directed to the identical data blocks to the single copy of the
data.

In a conventional deduplication system, if a matching
digest for a data block is found in an index table, the data
block is deduplicated to an identical data block associated
with the matching digest found in the index table by simply
selecting one data block as a master deduplicated copy,
updating the mapping of the other identical data block to
point to the selected data block, and freeing storage space
associated with the identical data block. Thus, in such a
conventional system, the conventional technique of deciding
which data block to preserve as a deduplicated block is
non-deterministic and a data block may simply be selected
for example based on an order in which data blocks are
identified. Thus, in such a conventional system, based on the
order in which addresses of the data block and identical data
blocks are aligned with respect to each other, either the
address mapping information of the data block is updated to
point to the identical data block found using the index table
or the address mapping information of the identical data
block found using the index table is updated to point to the
data block. Thus, in such a conventional system, a data
deduplication process does not take into account character-
istics of data blocks when mapping the data blocks to a
single identical data block.

For example, in such a conventional system, a dedupli-
cating technique does not take into account a policy such as
an /O access pattern for a data block that has been identified
for deduplication. Consequently, in such a conventional
system, when a cold data block (data block which is
accessed less frequently) and a hot data block (data block
which is accessed more frequently) are selected for dedu-
plication, the hot data block may get mapped to the cold data
block thereby freeing the hot data block. As a result, in such
a conventional system, I/O requests directed to the hot data
block are then redirected to the cold data block thereby
impacting [/O performance of users of the hot data block.
Thus, in such a conventional system, host [/O performance
of a hot data block may be degraded after deduplication of
the hot data block as references to the hot data block changes
thereby causing a change in cache status and mapping
information.

10

15

20

25

30

35

40

45

50

55

60

65

6

By contrast, in at least some implementations in accor-
dance with the technique as described herein, the current
technique evaluates 1/O access patterns of data objects
which have been identified for deduplication. Further, in at
least one embodiment of the current technique, when at least
two data objects are identified for deduplication, I/O access
pattern of the data objects are evaluated to determine which
data object is used as a master copy and which data block is
mapped to the master copy and freed. Thus, in at least one
embodiment of the current technique, 1/O mapping path is
optimized to continue accessing frequently accessed data
after a deduplicating technique is applied.

In at least one embodiment of the current technique, when
a deduplicating technique is applied on a set of data objects,
hot spots on a storage extent are evaluated such that based
on the evaluation, the set of data objects are ordered based
on hotness of deduplication candidates during deduplication.

In at least some implementations in accordance with the
technique as described herein, the use of the managing data
deduplication in storage systems based on [/O activities
technique can provide one or more of the following advan-
tages: lowering costs by improving deduplication efficiency,
improving memory utilization by evaluating characteristics
of data objects identified for deduplication, improving /O
performance of a system by deduplicating data blocks based
on /O activities of the data blocks, and improving host I/O
performance by utilizing range lock statistics of storage
extents, generating hints for I/O hot spots and using hot
spots as a deduplication target during deduplication.

Referring now to FIG. 1, shown is an example of an
embodiment of a computer system that may be used in
connection with performing the technique or techniques
described herein. The computer system 10 includes one or
more data storage systems 12 connected to host systems
14a-14n through communication medium 18. The system 10
also includes a management system 16 connected to one or
more data storage systems 12 through communication
medium 20. In this embodiment of the computer system 10,
the management system 16, and the N servers or hosts
14a-14n may access the data storage systems 12, for
example, in performing input/output (I/O) operations, data
requests, and other operations. The communication medium
18 may be any one or more of a variety of networks or other
type of communication connections as known to those
skilled in the art. Each of the communication mediums 18
and 20 may be a network connection, bus, and/or other type
of data link, such as hardwire or other connections known in
the art. For example, the communication medium 18 may be
the Internet, an intranet, network or other wireless or other
hardwired connection(s) by which the host systems 14a-14n
may access and communicate with the data storage systems
12, and may also communicate with other components (not
shown) that may be included in the computer system 10. In
at least one embodiment, the communication medium 20
may be a LAN connection and the communication medium
18 may be an iSCSI or SAN through fibre channel connec-
tion.

Each of the host systems 14a-14» and the data storage
systems 12 included in the computer system 10 may be
connected to the communication medium 18 by any one of
a variety of connections as may be provided and supported
in accordance with the type of communication medium 18.
Similarly, the management system 16 may be connected to
the communication medium 20 by any one of variety of
connections in accordance with the type of communication
medium 20. The processors included in the host computer
systems 14a-14n and management system 16 may be any

US 9,460,102 B1

7

one of a variety of proprietary or commercially available
single or multiprocessor system, such as an Intel-based
processor, or other type of commercially available processor
able to support traffic in accordance with each particular
embodiment and application.

It should be noted that the particular examples of the
hardware and software that may be included in the data
storage systems 12 are described herein in more detail, and
may vary with each particular embodiment. Each of the host
computers 14a-14n, the management system 16 and data
storage systems may all be located at the same physical site,
or, alternatively, may also be located in different physical
locations. In connection with communication mediums 18
and 20, a variety of different communication protocols may
be used such as SCSI, Fibre Channel, iSCSI, FCoE and the
like. Some or all of the connections by which the hosts,
management system, and data storage system may be con-
nected to their respective communication medium may pass
through other communication devices, such as a Connectrix
or other switching equipment that may exist such as a phone
line, a repeater, a multiplexer or even a satellite. In at least
one embodiment, the hosts may communicate with the data
storage systems over an iSCSI or fibre channel connection
and the management system may communicate with the data
storage systems over a separate network connection using
TCP/IP. It should be noted that although FIG. 1 illustrates
communications between the hosts and data storage systems
being over a first connection, and communications between
the management system and the data storage systems being
over a second different connection, an embodiment may also
use the same connection. The particular type and number of
connections may vary in accordance with particulars of each
embodiment.

Each of the host computer systems may perform different
types of data operations in accordance with different types of
tasks. In the embodiment of FIG. 1, any one of the host
computers 14a-14n may issue a data request to the data
storage systems 12 to perform a data operation. For
example, an application executing on one of the host com-
puters 14a-14n may perform a read or write operation
resulting in one or more data requests to the data storage
systems 12.

The management system 16 may be used in connection
with management of the data storage systems 12. The
management system 16 may include hardware and/or soft-
ware components. The management system 16 may include
one or more computer processors connected to one or more
1/0 devices such as, for example, a display or other output
device, and an input device such as, for example, a key-
board, mouse, and the like. A data storage system manager
may, for example, view information about a current storage
volume configuration on a display device of the manage-
ment system 16. The manager may also configure a data
storage system, for example, by using management software
to define a logical grouping of logically defined devices,
referred to elsewhere herein as a storage group (SG), and
restrict access to the logical group.

It should be noted that although element 12 is illustrated
as a single data storage system, such as a single data storage
array, element 12 may also represent, for example, multiple
data storage arrays alone, or in combination with, other data
storage devices, systems, appliances, and/or components
having suitable connectivity, such as in a SAN, in an
embodiment using the techniques herein. It should also be
noted that an embodiment may include data storage arrays or
other components from one or more vendors. In subsequent
examples illustrated the techniques herein, reference may be

10

15

20

25

30

35

40

45

50

55

60

65

8

made to a single data storage array by a vendor, such as by
EMC Corporation of Hopkinton, Mass. However, as will be
appreciated by those skilled in the art, the techniques herein
are applicable for use with other data storage arrays by other
vendors and with other components than as described herein
for purposes of example.

An embodiment of the data storage systems 12 may
include one or more data storage systems. Each of the data
storage systems may include one or more data storage
devices, such as disks. One or more data storage systems
may be manufactured by one or more different vendors.
Each of the data storage systems included in 12 may be
inter-connected (not shown). Additionally, the data storage
systems may also be connected to the host systems through
any one or more communication connections that may vary
with each particular embodiment and device in accordance
with the different protocols used in a particular embodiment.
The type of communication connection used may vary with
certain system parameters and requirements, such as those
related to bandwidth and throughput required in accordance
with a rate of I/O requests as may be issued by the host
computer systems, for example, to the data storage systems
12.

It should be noted that each of the data storage systems
may operate stand-alone, or may also included as part of a
storage area network (SAN) that includes, for example,
other components such as other data storage systems.

Each of the data storage systems of element 12 may
include a plurality of disk devices or volumes. The particular
data storage systems and examples as described herein for
purposes of illustration should not be construed as a limi-
tation. Other types of commercially available data storage
systems, as well as processors and hardware controlling
access to these particular devices, may also be included in an
embodiment.

Servers or host systems, such as 14a-14n, provide data
and access control information through channels to the
storage systems, and the storage systems may also provide
data to the host systems also through the channels. The host
systems do not address the disk drives of the storage systems
directly, but rather access to data may be provided to one or
more host systems from what the host systems view as a
plurality of logical devices or logical volumes. The logical
volumes may or may not correspond to the actual disk
drives. For example, one or more logical volumes may
reside on a single physical disk drive. Data in a single
storage system may be accessed by multiple hosts allowing
the hosts to share the data residing therein. A LUN (logical
unit number) may be used to refer to one of the foregoing
logically defined devices or volumes. An address map kept
by the storage array may associate host system logical
address with physical device address.

In such an embodiment in which element 12 of FIG. 1 is
implemented using one or more data storage systems, each
of the data storage systems may include code therecon for
performing the techniques as described herein. In following
paragraphs, reference may be made to a particular embodi-
ment such as, for example, an embodiment in which element
12 of FIG. 1 includes a single data storage system, multiple
data storage systems, a data storage system having multiple
storage processors, and the like. However, it will be appre-
ciated by those skilled in the art that this is for purposes of
illustration and should not be construed as a limitation of the
techniques herein. As will be appreciated by those skilled in
the art, the data storage system 12 may also include other
components than as described for purposes of illustrating the
techniques herein.

US 9,460,102 B1

9

The data storage system 12 may include any one or more
different types of disk devices such as, for example, an ATA
disk drive, FC disk drive, and the like. Thus, the storage
system may be made up of physical devices with different
physical and performance characteristics (e.g., types of
physical devices, disk speed such as in RPMs), RAID levels
and configurations, allocation of cache, processors used to
service an 1/O request, and the like.

Given the different performance characteristics, one or
more tiers of storage devices may be defined. The physical
devices may be partitioned into tiers based on the perfor-
mance characteristics of the devices; grouping similar per-
forming devices together. Conversely, the particular perfor-
mance characteristics may be applied to a storage pool with
or without the definition of tiers. The set of resources
associated with or designated for use by a tier or grouping
within a pool may be characterized as a dynamic binding in
that the particular set of data storage system resources
utilized by consumers in a tier may vary from time to time.
A current configuration for the data storage system, static
aspects of the current data storage system resources (e.g.,
types of devices, device storage capacity and physical device
characteristics related to speed and time to access data stored
on the device), and current workload and other dynamic
aspects (e.g., actual observed performance and utilization
metrics) of the data storage system may vary at different
points in time.

In certain cases, an enterprise can utilize different types of
storage systems to form a complete data storage environ-
ment. In one arrangement, the enterprise can utilize both a
block based storage system and a file based storage hard-
ware, such as a VNX™ or VNXe™ system (produced by
EMC Corporation, Hopkinton, Mass.). In such an arrange-
ment, typically the file based storage hardware operates as a
front-end to the block based storage system such that the file
based storage hardware and the block based storage system
form a unified storage system.

Referring now to FIG. 2, shown is an example of an
embodiment of a computer system such as a unified data
storage system that may be used in connection with per-
forming the technique or techniques described herein. As
shown, the unified data storage system 10 includes a block
based storage system 12 and file based storage hardware 34.
While the block based storage system 12 may be configured
in a variety of ways, in at least one embodiment, the block
based storage system 12 is configured as a storage area
network (SAN), such as a VNX™ or VNXe™ system, as
produced by EMC Corporation of Hopkinton, Mass. While
the file based storage hardware 34 may be configured in a
variety of ways, in at least one embodiment, the file based
storage hardware 34 is configured as a network attached
storage (NAS) system, such as a file server system produced
by EMC Corporation of Hopkinton, Mass., configured as a
header to the block based storage system 12.

The computer system 10 includes one or more block
based data storage systems 12 connected to host systems
14a-14n through communication medium 18. The system 10
also includes a management system 16 connected to one or
more block based data storage systems 12 through commu-
nication medium 20. In this embodiment of the computer
system 10, the management system 16, and the N servers or
hosts 14a-14rn may access the block based data storage
systems 12, for example, in performing input/output (I/O)
operations, data requests, and other operations. The com-
munication medium 18 may be any one or more of a variety
of networks or other type of communication connections as
known to those skilled in the art. Each of the communication

30

40

45

55

10

mediums 18 and 20 may be a network connection, bus,
and/or other type of data link, such as a hardwire or other
connections known in the art. For example, the communi-
cation medium 18 may be the Internet, an intranet, network
or other wireless or other hardwired connection(s) by which
the host systems 14a-14n may access and communicate with
the block based data storage systems 12, and may also
communicate with other components (not shown) that may
be included in the computer system 10. In one embodiment,
the communication medium 20 may be a LAN connection
and the communication medium 18 may be an iSCSI or fibre
channel connection.

Each of the host systems 14a-14» and the block based
data storage systems 12 included in the computer system 10
may be connected to the communication medium 18 by any
one of a variety of connections as may be provided and
supported in accordance with the type of communication
medium 18. Similarly, the management system 16 may be
connected to the communication medium 20 by any one of
variety of connections in accordance with the type of
communication medium 20. The processors included in the
host computer systems 14a-14» and management system 16
may be any one of a variety of proprietary or commercially
available single or multiprocessor system, such as an Intel-
based processor, or other type of commercially available
processor able to support traffic in accordance with each
particular embodiment and application.

In at least one embodiment of the current technique, block
based data storage system 12 includes multiple storage
devices 40, which are typically hard disk drives, but which
may be tape drives, flash memory, flash drives, other solid
state drives, or some combination of the above. In at least
one embodiment, the storage devices may be organized into
multiple shelves 44, each shelf containing multiple devices.
In the embodiment illustrated in FIG. 2, block based data
storage system 12 includes two shelves, Shelfl 44A and
Shelf2 44B; Shelfl 44A contains eight storage devices,
D1-D8, and Shelf2 also contains eight storage devices,
D9-D16.

Block based data storage system 12 may include one or
more storage processors 46, for handling input/output (I/O)
requests and allocations. Each storage processor 46 may
communicate with storage devices 40 through one or more
data buses 48. In at least one embodiment, block based data
storage system 12 contains two storage processors, SP1
46A, and SP2 46B, and each storage processor 46 has a
dedicated data bus 48 for each shelf 44. For example, SP1
46A is connected to each storage device 40 on Shelfl 44A
via a first data bus 48A and to each storage device 40 on
Shelf2 44B via a second data bus 48B. SP2 46B is connected
to each storage device 40 on Shelfl 44 A via a third data bus
48C and to each storage device 40 on Shelf2 44B via a fourth
data bus 48D. In this manner, each device 40 is configured
to be connected to two separate data buses 48, one to each
storage processor 46. For example, storage devices D1-D8
may be connected to data buses 48A and 48C, while storage
devices D9-D16 may be connected to data buses 48B and
48D. Thus, each device 40 is connected via some data bus
to both SP1 46A and SP2 46B. The configuration of block
based data storage system 12, as illustrated in FIG. 2, is for
illustrative purposes only, and is not considered a limitation
of the current technique described herein.

In addition to the physical configuration, storage devices
40 may also be logically configured. For example, multiple
storage devices 40 may be organized into redundant array of
inexpensive disks (RAID) groups. Although RAID groups
are composed of multiple storage devices, a RAID group

US 9,460,102 B1

11

may be conceptually treated as if it were a single storage
device. As used herein, the term “storage entity” may refer
to either a single storage device or a RAID group operating
as a single storage device.

Storage entities may be further sub-divided into logical
units. A single RAID group or individual storage device may
contain one or more logical units. Each logical unit may be
further subdivided into portions of a logical unit, referred to
as “slices”. In the embodiment illustrated in FIG. 2, storage
devices D1-D5, is sub-divided into 3 logical units, LU1 42A,
LU2 42B, and LU3 42C. The L.Us 42 may be configured to
store a data file as a set of blocks striped across the LL.Us 42.

The unified data storage system 10 includes a file based
storage hardware 34 that includes at least one data processor
26. The data processor 26, for example, may be a commodity
computer. The data processor 26 sends storage access
requests through physical data link 36 between the data
processor 26 and the block based storage system 12. The
data link 36 may be any one or more of a variety of networks
or other type of communication connections as known to
those skilled in the art. The processor included in the data
processor 26 may be any one of a variety of proprietary or
commercially available single or multiprocessor system,
such as an Intel-based processor, or other type of commer-
cially available processor able to support traffic in accor-
dance with each particular embodiment and application.
Further, file based storage hardware 34 may further include
control station 30 and additional data processors (such as
data processor 27) sharing storage device 40. A dual-redun-
dant data link 32 interconnects the data processors 26, 27 to
the control station 30. The control station 30 monitors a
heartbeat signal from each of the data processors 26, 27 in
order to detect a data processor failure. If a failed data
processor cannot be successfully re-booted, the control
station 30 will “fence off” the failed data processor and
re-assign or fail-over the data processing responsibilities of
the failed data processor to another data processor of the file
based storage hardware 34. The control station 30 also
provides certain server configuration information to the data
processors 26, 27. For example, the control station maintains
a boot configuration file accessed by each data processor 26,
27 when the data processor is reset.

The data processor 26 is configured as one or more
computerized devices, such as file servers, that provide end
user devices (not shown) with networked access (e.g., NFS
and CIFS facilities) to storage of the block based storage
system 12. In at least one embodiment, the control station 30
is a computerized device having a controller, such as a
memory and one or more processors. The control station 30
is configured to provide hardware and file system manage-
ment, configuration, and maintenance capabilities to the data
storage system 10. The control station 30 includes boot strap
operating instructions, either as stored on a local storage
device or as part of the controller that, when executed by the
controller following connection of the data processor 26 to
the block based storage system 12, causes the control station
30 to detect the automated nature of a file based storage
hardware installation process and access the data processor
26 over a private internal management network and execute
the file based hardware installation process.

FIG. 3 illustrates one of the many ways of constructing
storage extents from a group of physical devices. For
example, RAID Group 64 may be formed from physical disk
devices 60. The data storage system best practices of a
policy may specify the particular RAID level and configu-
ration for the type of storage extent being formed. The RAID
Group 64 may provide a number of data storage LUNs 62.

10

15

20

25

30

35

40

45

50

55

60

65

12

An embodiment may also utilize one or more additional
logical device layers on top of the LUNs 62 to form one or
more logical device volumes 61. The particular additional
logical device layers used, if any, may vary with the data
storage system. It should be noted that there may notbe a 1-1
correspondence between the LUNs of 62 and the volumes of
61. In a similar manner, device volumes 61 may be formed
or configured from physical disk devices 60. Device vol-
umes 61, LUNs 62 and physical disk devices 60 may be
configured to store one or more blocks of data or one or more
files organized as a file system. A storage extent may be
formed or configured from one or more LUNs 62. Thus, a
deduplication domain consists of a set of storage extents
which includes a set of deduplicated LUNs sharing a com-
mon set of blocks.

The data storage system 12 may also include one or more
mapped devices 70-74. A mapped device (e.g., “thin logical
unit”, “direct logical unit”) presents a logical storage space
to one or more applications running on a host where different
portions of the logical storage space may or may not have
corresponding physical storage space associated therewith.
However, the “thin logical unit” (“TLU”) mapped device is
not mapped directly to physical storage space. Instead,
portions of the mapped storage device for which physical
storage space exists are mapped to data devices such as
device volumes 61a-615b, which are logical devices that map
logical storage space of the data device to physical storage
space on the physical devices 60a-6056. Thus, an access of
the logical storage space of the “thin logical unit” (“TLU”)
mapped device results in either a null pointer (or equivalent)
indicating that no corresponding physical storage space has
yet been allocated, or results in a reference to a data device
which in turn references the underlying physical storage
space.

Referring to FIG. 4, shown is a more detailed represen-
tation of components that may be included in an embodi-
ment using the techniques herein. With reference also to
FIGS. 1-3, in a deduplication domain, each storage extent
contains a range of data blocks. For example, in FIG. 4,
storage extent A 131, storage extent B 132 and storage extent
C 133 are part of the deduplication domain-1 130. Within a
data storage system, there may be multiple deduplication
domains such as deduplication domain-1 130, and other
deduplication domains. Within a deduplication domain, a
goal of a deduplication process is to maintain only a single
copy of each unique set of data. Software or other logic
executing the deduplication process examines data in the
deduplication domain in fixed sized chunks and determines
whether the data stored in a chunk is the same as the data
stored in another chunk in the same deduplication domain.
If so, an address map for the LUNSs is manipulated so that
respective address map entries for the chunks reference the
same physical chunk of data, and then the chunks that
currently hold the extra copies of the data are freed up as
unused storage. The address map for the LUNs stores a
mapping of logical block addresses to physical block
addresses. In at least some embodiments of the current
technique, the fixed sized chunk can be a data block. For
example, in FIG. 4, storage extent A 131 includes data
blocks 134-137, storage extent B 132 includes data blocks
138-141 and storage extent C 131 includes data blocks
142-145 and other data blocks (not shown).

In at least one embodiment of the current technique,
deduplication logic can be provided on data storage system
12. In an alternative embodiment, deduplication logic may
be provided also or instead on a host system, such as host
system 14. As described elsewhere herein, deduplication

US 9,460,102 B1

13

logic may be performed in a manner that is transparent to an
application running on a host system. In at least one embodi-
ment of the current technique, deduplication server 110
provides deduplication services in data storage system 12 by
working in conjunction with I/O Coordinator 155 and File
system mapping driver 165. 1/0 Coordinator 155 manages
1/0 operations in conjunction with the file system mapping
driver 165. 1/0 Coordinator 155 provides framework for
implementing digest and other /O requests issued by the
deduplication server 110. File system mapping driver 165 is
a light-weight file system library that provides file system
functionality and allows data storage system 12 to create
files within a file system. File system mapping driver 165
processes 1/Os directed to metadata of a file system and
provides information regarding metadata (e.g., deduplica-
tion key, data block mapping information) of a data block
that is potentially a candidate for deduplication.

In at least one embodiment of the current technique,
deduplication director 120 is a process that iterates through
deduplication domains including logical units and schedules
data deduplication processes based on deduplication policies
122 to perform data deduplication. Further, deduplication
director 120 works in conjunction with deduplication engine
105 to perform data deduplication on deduplication domain
130. Thus, deduplication director 120 is a component
responsible for coordinating data deduplication operations.
As a result, deduplication director 120 identifies data dedu-
plication domains, manages storage space for performing
data deduplication, and manages deduplication engine 105
to process each data deduplication domain.

In at least one embodiment of the current technique,
deduplication server 110 is a component that provides
services to deduplication director 120 to iterate over sets of
data in a set of deduplication domain 130. Deduplication
server 110 also computes digests and remaps blocks after the
deduplication technique is applied to remove duplicate
blocks of data. A deduplication database (e.g. an index table)
is maintained for a deduplication domain. Deduplication
engine 105 communicates with the deduplication server 110
to iterate through the set of deduplication domain 130 and
computes digests for data blocks that are iterated through. A
digest is created for each chunk of data (e.g., a data block)
that is identified as a candidate for deduplication. Dedupli-
cation engine 105 detects potential duplicate copies of data
and issues a request to the deduplication server 110 to
deduplicate the data. The deduplication database is stored on
one of the storage extents that include one or more LLUNSs.
An index table 115 may also be maintained on a LUN
located in the same pool as the deduplication domain 130. In
at least some implementations, an index table is a persistent
hash-table of chunk-IDs keyed by the digest of the data
stored in the chunk. The index table need not contain entries
for every data chunk in the deduplication domain, but the
effectiveness of deduplication is a function of the number of
entries stored in the index table 115. The more entries in the
index table, the more likely that duplicate blocks will be
detected during deduplication processing.

During deduplication processing as described herein,
deduplication server 110 provides services to deduplication
engine 105 by interacting with I/O coordinator 155 and file
system mapping driver 165. Deduplication of data happens
in two logically distinct operations: detection and remap-
ping. The detection operation identifies blocks containing
the same data. The remapping operation updates address
maps that record physical locations of logical units of data
so that a single block of data is shared by multiple LUNSs or
by multiple positions within the same LUN. Detection is

10

15

20

25

30

35

40

45

50

55

60

65

14

accomplished by building a database (e.g., index table 115)
that maintains a digest (e.g., SHA, checksum) for each
block. When two blocks have the same digest they have a
sufficiently high probability of containing the same data to
warrant a bit-for-bit comparison to confirm they are exact
duplicates. Remapping leverages dynamic block-mapping
technology of file system mapping driver 165. A file system
allows dynamic manipulation of the address maps that
connects LUN’s logical address space to its physical address
space. The file system also allows mapping a single block of
storage at multiple locations within the file system, and
allows handling of writes to shared blocks by allocating new
storage and updating the shared address mappings. Further,
a file system may use a virtual block mapping pointers (also
referred to herein as “VBM pointers”) to map a data block.
1/O coordinator 155 manages /O operations in conjunction
with the file system mapping driver 165. 1/O coordinator 155
provides framework for implementing digest and other I/O
requests issued by the deduplication server 110.

Thus, deduplication engine 105 and deduplication server
110 working in conjunction with one another identify data
blocks for deduplication, compare data digest information of
the data blocks, identify candidate data blocks for dedupli-
cation, issue deduplication requests, and maintain index
table 115. Further, /O coordinator 155 and file system
mapping driver 165 working in conjunction with one
another process deduplication requests received from dedu-
plication server 110. File system mapping driver 165 per-
forms a deduplication operation by updating VBM pointers
of a deduplicated data block and freeing up redundant
instances of the deduplicated data block.

In at least one embodiment of the current technique,
deduplication engine 105 and deduplication server 110
working in conjunction with one another identify data
blocks for deduplication. Further, in at least one embodiment
of the current technique, when data blocks are identified for
deduplication, characteristics of I/O access pattern for the
data blocks are evaluated based on a deduplication policy in
such a way that a data block having a high number of 1/0
operations is used for deduplicating other identical instances
of the data block.

It should be noted that a set of deduplication policies may
be initialized and selected by a data storage system. Further,
it should be noted that a set of deduplication policies may be
selected by a user of a data storage system.

In at least one embodiment of the current technique, data
storage system 12 receives host 10s from host systems 14.
In order to maintain data consistency, the data storage
system 12 imposes locks on storage extents when processing
host 10s. For example, the data storage system 12 applies
read (or shared) locks on ranges of extents when the host
systems 14 read host data from these ranges of extents.
Furthermore, the data storage system 12 applies write (or
exclusive) locks on ranges of extents when the host systems
14 write host data to these ranges of extents. Thus, 1O hot
spots are identified based on ranges of extents of host 10
operations. In particular, as host IO operations access ranges
of extents on a data storage system, locks on these ranges
which are used to synchronize access to data (e.g., between
a host 10 operation and other system activities) can be
tracked by a lock history database. As the data storage
system 12 imposes range locks on the ranges of extents, the
data storage system 12 updates contents of a lock history
database based on these range locks. Accordingly, the data
storage system 12 is then able to identify which extents are
active (or inactive) based on the contents of the lock history
database. With the contents of the lock history database now

US 9,460,102 B1

15

available for analysis, the contents of the lock history
database are able to identify particular extents which are
active and inactive. Thus, IO hot spots (i.e., active storage
extents) can then be identified from the information in the
lock history database, and data storage services can be
configured to smartly operate based on the identified 10 hot
spots such as an automated data placement service which
places data among storage tiers and deduplication services
which selects a data block associated with the most 1/O
activity as a master copy for deduplicating other identical
instances of data blocks.

In at least one embodiment of the current technique, a
lock history database includes range-lock entries, each
range-lock entry identifying a respective host IO operation
and a respective range of extents which was locked by the
respective host IO operation. In such a case, updating the
contents of the lock history database includes receiving an
10 event message indicating a particular host IO operation
and a particular range of extents which was accessed by the
particular host 1O operation, and adding a new range-lock
entry to the lock history database. The new range-lock entry
identifies the particular host IO operation and the particular
range of extents which was locked by the particular host 10
operation.

In at least one embodiment of the current technique, a
range of extents is defined by a starting offset and an extent
length. In another embodiment of the current technique, a
range of extents is defined by a starting offset and an ending
offset. Alternative ways of defining a range of extents are
suitable for use as well.

The range lock mechanism is described in U.S. patent
application Ser. No. 13/536,389 for “Techniques for Iden-
tifying IO Hot Spots Using Range-Lock Information” filed
on Jun. 28, 2012, which is incorporated herein by reference.

Referring to FIG. 5, shown is a logical representation of
a LUN presented to a host and organized as a file system that
may be included in an embodiment using the techniques
herein. A user of data storage system 12 accesses data from
LUNs stored on disk drives 60 in fixed sized chunks. Each
fixed size chunk is known as a slice. One or more slices are
grouped together to create a slice pool. Host system 14
provisions storage from slice pools for creating LUNs. A
LUN 80 is visible to host system 14 and a user of a data
storage system 12. Typically, storage is allocated when host
system 14 issues a write request and needs a data block to
write user’s data. File systems typically include metadata
describing attributes of a file system and data from a user of
the file system. A file system contains a range of file system
blocks that store metadata and data. A file system mapping
driver 165 allocates file system blocks from slices of storage
for creating files and storing metadata of a file system. In at
least some embodiments of the current technique, the file
system block may be 8 kilobyte (KB) in size. Further, a user
of data storage system 12 creates files in a file system. The
file system is organized as a hierarchy. At the top of the
hierarchy is a hierarchy of the directories 82 in the file
system. Inodes of data files 84 depend from the file system
directory hierarchy 82. Indirect blocks of data files 86
depend from the inodes of the data files 84. Data block
metadata 87 and data blocks of data files 88 depend from the
inodes of data files 84 and from the indirect blocks of data
files 86.

A file system includes one or more file system blocks.
Some of the file system blocks are data blocks, some file
system blocks may be indirect block, as described above, or
some file system blocks are free blocks that have not yet
been allocated to any file in the file system. In an indirect

20

25

30

40

45

16

mapping protocol, such as the conventional indirect map-
ping protocol of a UNIX-based file system, the indirect
mapping protocol permits any free block of the file system
to be allocated to a file of the file system and mapped to any
logical block of a logical extent of the file. This unrestricted
mapping ability of the conventional indirect mapping pro-
tocol of a UNIX-based file system is a result of the fact that
metadata for each file includes a respective pointer to each
data block of the file of the file system, as described below.
Each file of the file system includes an inode containing
attributes of the file and a block pointer array containing
pointers to data blocks of the file. There is one inode for each
file in the file system. Each inode can be identified by an
inode number. Several inodes may fit into one of the file
system blocks. The inode number can be easily translated
into a block number and an offset of the inode from the start
of the block. Each inode of a file contains metadata of the
file. Some block pointers of a file point directly at data
blocks, other block pointers of the file points at blocks of
more pointers, known as an indirect block. There are at least
fifteen block pointer entries in a block pointer array con-
tained in an inode of a file. The first of up to twelve entries
of'block pointers in the inode directly point to the first of up
to twelve data blocks of the file. If the file contains more than
twelve data blocks, then the thirteenth entry of the block
pointer array contains an indirect block pointer pointing to
an indirect block containing pointers to one or more addi-
tional data blocks. If the file contains so many data blocks
that the indirect block becomes full of block pointers, then
the fourteenth entry of the block pointer array contains a
double indirect block pointer to an indirect block that itself
points to an indirect block that points to one or more
additional data blocks. If the file is so large that the indirect
block becomes full of block pointers and its descendant
indirect blocks are also full of block pointers, then the
fifteenth entry of the block pointer array includes another
level of indirection where the block pointer entry contains a
triple indirect block pointer to an indirect block that points
to an indirect block that points to an indirect block that
points to one or more additional data blocks. Similarly there
exists fourth and fifth level of indirections. Once the indirect
blocks at last level of indirection and its descendant indirect
blocks become full of pointers, the file contains a maximum
permitted number of data blocks. Further, an indirect block
at the last level of indirection is also referred to as a leaf
indirect block. However, it should be noted that a file system
may be organized based on any one of the known mapping
techniques such as an extent based binary tree mapping
mechanism.

Referring to FIG. 6, shown is a representation of a per
block metadata (also referred to as “BMD”) for a file system
data block that may be included in an embodiment using the
techniques described herein. The per-block metadata 70 for
a file system data block includes an inode number of a file
of'the file system, the file system data block number and the
logical offset of the file system data block. The per-block
metadata 70 for a file system data block also includes an
internal checksum protecting the integrity of the information
stored in the per-block metadata 70. The per-block metadata
for a file system data block may further include a mapping
pointer 71 and a data structure indicating state of the
per-block metadata 72.

Referring to FIG. 7, shown is a representation of a
mapping pointer 71 of a file system data block that may be
included in an embodiment using the techniques described
herein. Each file system data block of a file is associated with
a respective mapping pointer. A mapping pointer of a file

US 9,460,102 B1

17

system block points to the file system block and includes
metadata information for the file system block. A file system
block associated with a mapping pointer may be a data block
or an indirect data block which in turn points to other data
blocks or indirect blocks. A mapping pointer includes infor-
mation that help map a logical offset of a file system block
to a corresponding physical block address of the file system
block. Mapping pointer 71 includes metadata information
such as shared bit 90, digest bit 91, direct bit 92, virtual bit
93, weight 94, unused bit 95 and block address 96. Shared
bit 90 of mapping pointer 71 associated with a file system
data block indicates whether the data block (or data blocks
if the mapping pointer is associated with an indirect block)
may be shared. Digest bit 91 of mapping pointer 71 for a file
system block indicates whether the file system block has
been digested by a deduplication engine. Direct bit 92 of
mapping pointer 71 for a file system block indicates whether
the physical address of the file system block can be com-
puted algorithmically. Virtual bit 93 of mapping pointer 71
for a file system block indicates whether the mapping
pointer is a virtual pointer. Weight 94 of mapping pointer 71
for a file system block indicates a delegated reference count
for the mapping pointer 71. The delegated reference count is
used by a snapshot copy facility when a replica of a file is
created. Mapping pointers of the inode of the file are copied
and included in the inode of the replica of the file. In at least
one embodiment, mapping pointers of the inode may include
mapping pointers pointing to direct data blocks and mapping
pointers pointing to indirect data blocks. Then, the delegated
reference count values stored in the mapping pointers of the
file and the replica of the file are updated to indicate that the
file and the replica of the file share data blocks of the file.
Further, the delegated reference count may also be used by
a deduplicating technique to deduplicate identical data
blocks of a source and target logical objects. Unused bit 95
of mapping pointer 71 for a file system block indicates an
unused space reserved for a future use. Block address 96 of
mapping pointer 71 for a file system block indicates the
block number of the file system block. Alternatively, block
address 96 of mapping pointer 71 may indicate a Virtual
Block Metadata (“VBM”) identification number which
points to a VBM object that points to a data block and
includes metadata for the data block. Thus, VBM Id 96 is
used to find an object including virtual block metadata.
Thus, a VBM object includes file system data block mapping
pointer as described in FIG. 7. It also includes a total
distributed weight for the VBM object which is the sum of
weights of each mapping pointer for a file system block
pointing to the VBM object. The VBM object may further
includes a mapping pointer which may point to a file system
block or another VBM object such that the mapping pointer
includes the distributed weight for the mapping pointer.

In response to a request by a client of a storage system to
de-duplicate a file system block or to create a snapshot copy
of a production file, a virtual block mapping pointer is
created that provides a mapping information to a logical
block storing data of the file system block of the production
file. The file system block includes a pointer pointing back
to the metadata of the virtual block mapping pointer. Thus,
a new kind of block pointer called virtual block mapping
(VBM) pointer enables a migration or re-organization of
data blocks to be performed in a non-disruptive fashion that
is transparent to a file system manager because pointers to
logical data blocks may be changed dynamically without
having to change block pointers in inodes and indirect
blocks pointing to the data blocks.

25

30

40

45

18

In at least one embodiment of the current technique,
source and target data blocks are deduplicated by updating
VBM pointers of the source and target data blocks such that
at the completion of a deduplication operation, the VBM
pointer of the target data block points to the VBM pointer of
the source data block and the target data block is freed if the
target data block is not shared by any other mapping pointer.

Referring to FIG. 8, shown is a more detailed represen-
tation of components that may be included in an embodi-
ment using the techniques described herein. FIG. 8 shows
mapping pointers 200, 210 for source and target data blocks
that are identified for deduplicating the source data block
230 and the target data block 235. The mapping pointer 200
for the source data block 230 includes shared bit 201
indicating that the source data block has not been shared yet,
virtual bit 202, direct bit 203, digest bit 204, delegated
reference count (e.g., for illustration purposes a value
denoted by “d1”) 205 and VBM identification number 206
pointing to VBM object 220. The delegated reference count
205 value may be a specific number such as 20 or 1,000. The
source data block 230 has associated per-block metadata
including a reference count 231. The per-block metadata of
the source data block 230, for example, may be organized as
a table separate from the source data block 230 and indexed
by the block number of the source data block 230.

The VBM object 220 includes metadata for data block
230 such as is de-duped field 221 indicating whether the data
block 230 has been deduplicated, total distributed weight
222 indicating the sum of reference counts of data blocks
referenced by the VBM object 220, and mapping pointer 223
to data block 230. For example, in FIG. 8, weight (“d1”) 205
included in mapping pointer 200 and total distributed weight
(“d1”) 222 included in the VBM object 220 indicates that the
VBM object 220 is owned by the mapping pointer 200.
Similarly, weight (“d4”) included in mapping pointer 223 of
the VBM object 220 and weight (“d4”) 231 included in
per-block metadata of data block 230 indicates that the data
block 230 is owned by the VBM object 220. Thus, in such
a case, the data block 230 is owned by mapping pointer 200
by an indirect reference as each mapping pointer in the chain
from mapping pointer 200 to data block 230 owns the object
pointed to by respective mapping pointer.

Similarly, the mapping pointer 210 for the target data
block 235 includes shared bit 211 indicating that the target
data block has not been shared yet, virtual bit 212, direct bit
213, digest bit 214, delegated reference count (e.g., for
illustration purposes a value denoted by “d2”) 215 and VBM
identification number 216 pointing to VBM object 225. The
delegated reference count 215 value may be a specific
number such as 20 or 1,000. The target data block 235 has
associated per-block metadata including a reference count
236. The per-block metadata of the target data block 235, for
example, is organized as a table separate from the target data
block 235 and indexed by the block number of the target
data block 235.

The VBM object 225 includes metadata for data block
235 such as total distributed weight 226 indicating the sum
of reference counts of mapping pointers referenced by the
VBM object 225, and mapping pointer 227 to data block
235. In the example of FIG. 8, the delegated reference count
215 has an initial full-weight value (e.g. d2 which may be,
for example, 1000) and the reference count 236 in the
per-block metadata of the target data block 235 also has an
initial full-weight value (e.g. d3 which may be, for example,
1000). Further, weight (“d2”) 215 matches with total dis-
tributed weight (“d2”’) 226 in the VBM object indicating that
mapping pointer 210 owns the VBM object 225 which in

US 9,460,102 B1

19

turns own the data block 235 because of the matching weight
values in mapping pointer 227 and data block 235.

Referring to FIG. 9, shown is a more detailed represen-
tation of components that may be included in an embodi-
ment using the techniques described herein. With reference
also to FIG. 8, in at least one embodiment of the current
technique, source data block 230 is deduplicated to target
data block 235 by updating metadata such as VBM objects
220, 225 and mapping pointer 227 using the delegated
reference counting mechanism based on the determination
that 1/O activity for the target data block 235 is less than I/O
activity for the source data block 230. Thus, a deduplicating
technique selects the source data block 230 as a master copy
and deduplicate the target data block 235 to the source data
block 230 based on evaluation of I/O activities of the source
and target data blocks 230, 235 which may be evaluated
based on range-lock information.

In order to perform deduplication of target data block 235
to source data block 230, the source data block 230 is shared
by mapping pointer 200 of the source data block 230 and
mapping pointer 210 of target data block 235. The sharing
of the source data block 230 is performed by updating
mapping pointer 227 in VBM object 225 for the target data
block such that the mapping pointer 227 points to VBM
object 220 for the source data block 230. Total distributed
weight 222 for VBM object 220 for source data block 230
is incremented by total distributed weight value 226 in VBM
object 225 of target data block 235 to indicate that VBM
object 220 is now shared between mapping pointers 200,
210 of source and target data blocks 230, 235. The shared bit
201 of mapping pointer 200 for the source data block 230 is
updated to indicate that contents of source data block 230 are
now shared which further indicates that the VBM object 220
referenced by mapping pointer 200 is now shared by the
mapping pointer 200 and VBM object 225. Further, is
de-duped field 221 in VBM object 220 for source data block
230 is set to indicate that the source data block has been
deduplicated to indicate that now identical data block (such
as target data block 235) shares the source data block 230.
Thus, the target logical object is deduplicated to the source
logical object.

Thus, a data de-duplication facility using the current
technique changes the mapping pointer 227 in the VBM
object 225 for target data block 235 (which has been
identified as a cold data block) to point to VBM object 220
for the source data block 230 (which has been identified as
a hot data block), and increments the total distributed weight
222 in the VBM object 220 for the source data block 230 by
reference count value (e.g. “d3”) 236 of target data block
235. At the end of the deduplication operation, if the target
data block 235 is not shared by any other mapping pointer
for a file system block, the target data block 235 is freed. For
example, in FIG. 9, at the end of the deduplication operation,
VBM object 225 no longer points to data block 235. Thus,
in such a case, the data block 235 is freed because the VBM
object 225 that previously owned the data block 235 no
longer points to the data block 235.

Referring to FIG. 10, shown is a flow diagram illustrating
a flow of data in the data storage system. With reference also
to FIGS. 1-9, data deduplication is managed in a storage
system based on 1/O activities of logical objects (e.g.,
storage extents, range of extents, data blocks) (step 450). A
request is received to deduplicate a first data object to a
second data object (step 452). /O activity of the first and
second data objects is evaluated (step 454). Based on the
evaluation of the /O activities for both data objects, a
deduplicating technique is applied to the first and second

10

15

20

25

30

35

40

45

50

55

60

65

20

data objects (step 456). In such a case, a hot data object
having a high number of [/O activities is selected as a master
copy during a deduplication operation.
While the invention has been disclosed in connection with
preferred embodiments shown and described in detail, their
modifications and improvements thereon will become read-
ily apparent to those skilled in the art. Accordingly, the spirit
and scope of the present invention should be limited only by
the following claims.
What is claimed is:
1. A method for use in managing data deduplication in
storage systems based on /O activities, the method com-
prising:
evaluating input/output (I/O) operations activity of first
and second data objects based on 1/O access patterns
for the first and second data objects, wherein the first
and second data objects are selected for applying a
deduplicating technique; and
based on the evaluation, applying the deduplicating tech-
nique to the first and second data objects, wherein
applying the deduplicating technique includes updating
mapping information of the first and second data
objects, wherein the second data object is deduplicated
to the first data object upon determining that 1/O
operations activity for the first data object is higher than
/O operations activity for the second data object,
wherein the first data object is deduplicated to the
second data object upon determining that 1/O opera-
tions activity for the second data object is higher than
1/O operations activity for the first data object.
2. The method of claim 1, wherein the first and second
data objects are selected from the group consisting of a
deduplication domain, a storage extent, a Logical Unit
Number (LUN), a file and a data block, wherein the data
block is a fixed size chunk of a physical disk storage.
3. The method of claim 2, wherein a deduplication domain
comprises a set of storage extents, wherein each storage
extent of the set of storage extents comprises a set of LUNSs,
each LUN of the set of LUNSs is a logical representation of
a subset of physical disk storage.
4. The method of claim 1, wherein a mapping pointer is
associated with a data block, wherein the mapping pointer
includes a distributed weight indicating whether the data
block has been shared.
5. The method of claim 1, wherein a mapping pointer for
a data block points to a Virtual Block Mapping object,
wherein the Virtual Block Mapping object includes another
mapping pointer to refer to a data block and a total distrib-
uted weight indicating whether the Virtual Block Mapping
object has been shared.
6. The method of claim 1, further comprising:
based on the evaluation of 1/O activity of the first and
second data objects, determining whether to keep the
first data object as a master deduplicated data object;

based on the determination, updating a Virtual Block
Mapping object referred to by a mapping pointer of the
second data object by changing the mapping pointer
included in the Virtual Block Mapping object to point
to a Virtual Block Mapping object referred to by a
mapping pointer of the first data object; and

freeing the second data object.

7. The method of claim 6, further comprising:

updating a total distributed weight of the Virtual Block

Mapping object referred to by the mapping pointer of
the first data object.

8. The method of claim 1, wherein a master deduplicated
copy is selected from the group consisting of the first and

US 9,460,102 B1

21

second data objects based on evaluation of the I/O activity
of the first and second data objects.

9. The method of claim 1, wherein the first data object is
selected as a master deduplicated copy upon determining
that 1/O activity of the first data object is more than I/O
activity of the second data object.

10. A system for use in managing data deduplication in
storage systems based on /O activities, the system com-
prising:

first logic evaluating input/output (I/O) operations activity

of first and second data objects based on [/O access
patterns for the first and second data objects, wherein
the first and second data objects are selected for apply-
ing a deduplicating technique; and

second logic applying, based on the evaluation, the dedu-

plicating technique to the first and second data objects,
wherein applying the deduplicating technique includes
updating mapping information of the first and second
data objects, wherein the second data object is dedu-
plicated to the first data object upon determining that
1/O operations activity for the first data object is higher
than I/O operations activity for the second data object,
wherein the first data object is deduplicated to the
second data object upon determining that 1/O opera-
tions activity for the second data object is higher than
1/O operations activity for the first data object.

11. The system of claim 10, wherein the first and second
data objects are selected from the group consisting of a
deduplication domain, a storage extent, a Logical Unit
Number (LUN), a file and a data block, wherein the data
block is a fixed size chunk of a physical disk storage.

12. The system of claim 11, wherein a deduplication
domain comprises a set of storage extents, wherein each
storage extent of the set of storage extents comprises a set of
LUNSs, each LUN of the set of LUNs is a logical represen-
tation of a subset of physical disk storage.

15

20

30

22

13. The system of claim 10, wherein a mapping pointer is
associated with a data block, wherein the mapping pointer
includes a distributed weight indicating whether the data
block has been shared.

14. The system of claim 10, wherein a mapping pointer
for a data block points to a Virtual Block Mapping object,
wherein the Virtual Block Mapping object includes another
mapping pointer to refer to a data block and a total distrib-
uted weight indicating whether the Virtual Block Mapping
object has been shared.

15. The system of claim 10, further comprising:

third logic determining, based on the evaluation of 1/O

activity of the first and second data objects, whether to
keep the first data object as a master deduplicated data
object;

fourth logic updating, based on the determination, a

Virtual Block Mapping object referred to by a mapping
pointer of the second data object by changing the
mapping pointer included in the Virtual Block Mapping
object to point to a Virtual Block Mapping object
referred to by a mapping pointer of the first data object;
and

fifth logic freeing the second data object.

16. The system of claim 15, further comprising:

sixth logic updating a total distributed weight of the

Virtual Block Mapping object referred to by the map-
ping pointer of the first data object.

17. The system of claim 10, wherein a master dedupli-
cated copy is selected from the group consisting of the first
and second data objects based on evaluation of the 1/O
activity of the first and second data objects.

18. The system of claim 10, wherein the first data object
is selected as a master deduplicated copy upon determining
that /O activity of the first data object is more than I/O
activity of the second data object.

#* #* #* #* #*

